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B(H )

Let H be a Hilbert space. The algebra of all bounded linear
operators T : H →H is denoted B(H ). It is complete under
the norm

‖T‖= sup{‖Tx‖ : x ∈ b1(H )}

Moreover, it has an involution T → T ∗ defined via

〈T ∗x ,y〉= 〈x ,Ty〉 for all x ,y ∈H .

This satisfies

‖T ∗T‖= ‖T‖2 the C∗ property.



C*-algebras

Definition

(a) A Banach algebra A is a complex algebra equiped with a
complete submultiplicative norm:

‖ab‖ ≤ ‖a‖‖b‖ .
(b) A C*-algebra A is a Banach algebra equiped with an
involution1 a→ a∗ satisfying the C*-condition

‖a∗a‖= ‖a‖2 for all a ∈A .

If A has a unit 1 then necessarily 1∗ = 1 and ‖1‖= 1.
If not, adjoin a unit:
If A is a C*-algebra let A ∼ =: A ⊕C

with (a,z)(b,w) =: (ab + wa + zb,zw) (a,z)∗ =: (a∗, z̄)

‖(a,z)‖=: sup{‖ab + zb‖ : b ∈ b1 A } (i.e. A ∼y A )

1that is, a map on A such that (a + λb)∗ = a∗+ λ̄b∗, (ab)∗ = b∗a∗, a∗∗ = a
for all a,b ∈A and λ ∈ C



Basic Examples

A morphism φ : A →B between C*-algebras is a linear map
that preserves products and the involution.
We will see later that morphisms are automatically contractive,
and 1-1 morphisms are isometric (algebra forces topology).

Basic Examples:
C
C(K ) : K compact Hausdorff, f ∗(t) = f (t): abelian, unital.
C0(X ) : X locally compact Hausdorff, f ∗(t) = f (t): abelian,
nonunital (iff X non-compact).
We will see later (9) that all abelian C*-algebras can be
represented as C0(X ) for suitable X.
Mn(C) : A∗ = conjugate transpose,
‖A‖= sup{‖Ax‖2 : x ∈ `2(n),‖x‖2 = 1}: non-abelian, unital.
B(H ): non-abelian, unital.
We will see later (26) that all C*-algebras can be
represented as closed selfadjoint subalgebras of B(H ) for
suitable H .



Nonexamples:

A(D) = {f ∈ C(D) : f |D holomorphic} 2

A closed subalgebra of the C*-algebra C(D) but not a
*-subalgebra, because if f ∈ A(D) then f̄ is not holomorphic
unless it is constant: A(D)∩A(D)∗ = C1: antisymmetric
algebra.
Tn = {(aij) ∈Mn(C) : aij = 0 for i > j} (upper triangular
matrices).
A closed subalgebra of the C*-algebra Mn(C) but not a
*-subalgebra. Here Tn∩T ∗n = Dn, the diagonal matrices: a
maximal abelian selfadjoint algebra (masa) in Mn.
Moo(C): infinite matrices with finite support.
To define norm (and operations), consider its elements as
operators acting on `2(N) with its usual basis. This is a
selfadjoint algebra, but not complete.
Its completion is K , the set of compact operators on `2: a
non-unital, non-abelian C*-algebra.

2D = {z ∈ C : |z|< 1}.



Direct sums, matrix algebras, C0(X ,A ) . . .

• If X is an index set and A is a C*-algebra, the Banach space
`∞(X ,A ) of all bounded functions a : X →A (with norm
‖a‖

∞
= sup{‖a(x)‖A : x ∈ X}) becomes a C*-algebra with

pointwise product and involution.
Its subspace c0(X ,A ) consisting of all a : X →A with
lim

x→∞
‖a(x)‖A = 0 is a C*-algebra.

The subset c00(X ,A ) consisting of all functions of finite support
is a dense *-subalgebra, which is proper when X is infinite.

• If X is locally compact Hausdorff then Cb(X ,A ) is the
*-subalgebra of `∞(X ,A ) consisting of continuous functions. It
is closed, hence a C*-algebra . (This is just C(X ,A ) when X is
compact.)
• The subalgebra C0(X ,A ) consists of those f ∈ Cb(X ,A )
which ‘vanish at infinity’, i.e. such that the function t →‖f (t)‖A
is in C0(X ).



Direct sums, matrix algebras, C0(X ,A ) . . .

Definition

(i) The direct sum A1⊕·· ·⊕An of C*-algebras is a C*-algebra
under pointwise operations and involution and the norm

‖(a1, . . . ,an)‖= max{‖a1‖ , . . . ,‖an‖}.
(ii) Let {Ai} be a family of C*-algebras . Their direct product
or `∞-direct sum

⊕
`∞ Ai is the subset of the cartesian product

∏Ai consisting of all (ai) ∈∏Ai such that i →‖ai‖Ai
is

bounded. It is a C*-algebra under pointwise operations and
involution and the norm

‖(ai)‖= sup{‖ai‖Ai
: i ∈ I}.

(iii) The direct sum or c0-direct sum
⊕

c0
Ai of a family {Ai} of

C*-algebras is the closed selfadjoint subalgebra of their direct
product consisting of all (ai) ∈∏Ai such that i →‖ai‖Ai
vanishes at infinity.

In case Ai = A for all i , the direct product is just `∞(I,A ).



Direct sums, matrix algebras, C0(X ,A ) . . .

• If A is a C*-algebra and n ∈ N, the space Mn(A ) of all
matrices [aij ] with entries aij ∈A becomes a *-algebra with
product [aij ][bij ] = [cij ] where cij = ∑k aikbkj and involution
[aij ]

∗ = [dij ] where dij = d∗ji .
How to define a norm?
Special cases:
• Suppose A is C0(X ); then norm Mn(C0(X )) by identifying it
(as a *-algebra) with C0(X ,Mn), i.e. Mn-valued continuous
functions on X vanishing at infinity.
• Suppose A is a C*-subalgebra of some B(H ); then norm
Mn(A )⊆Mn(B(H )) by identifying Mn(B(H )) with B(H n).
General case: Use Gelfand - Naimark 26.



The spectrum

Definition

If A is a unital C*-algebra and GL(A ) denotes the group of
invertible elements of A , the spectrum of an element a ∈A is

σ(a) = σA (a) = {λ ∈ C : λ1−a /∈GL(A )}.

If A is non-unital, the spectrum of a ∈A is defined by

σ(a) = σA ∼(a).

In this case, necessarily 0 ∈ σ(a).

Lemma

The set GL(A ) is open in A and the map x → x−1 is
continuous (hence a homeomorphism) on GL(A ).



The spectrum

Proposition

The spectrum is a nonempty compact subset of C.

The spectral radius

ρ(a) = sup{|λ | : λ ∈ σ(a)}

satisfies ρ(a)≤ ‖a‖. The Gelfand-Beurling formula is

ρ(a) = lim
n

∥∥an∥∥1/n ≤ ‖a‖ .



The spectrum

Proposition

(i) a = a∗ (we say a is selfadjoint) =⇒ σ(a)⊆ R
(ii) a = b∗b (is it OK to call a positive ??) =⇒ σ(a)⊆ R+

(iii) u∗u = 1 = uu∗ (we say u is unitary) =⇒ σ(u)⊆ T

Lemma

If aa∗ = a∗a (we say a is normal) then ρ(a) = ‖a‖. 3

Proposition

There is at most one norm on a *-algebra making it a
C*-algebra.

3This is not true in general: consider any a 6= 0 with a2 = 0.



Gelfand Theory

Theorem (Gelfand-Naimark 1)

Every commutative C*-algebra A is isometrically *-isomorphic
to C0(Â ) where Â is the set of nonzero morphisms φ : A → C
which, equipped with the topology of pointwise convergence, is
a locally compact Hausdorff space. The map is the Gelfand
transform:

A → C0(Â ) : a→ â where â(φ) = φ(a), (φ ∈ Â ).

The algebra A is unital iff Â is compact.



Gelfand Theory

In more detail:
Â is the set of all nonzero multiplicative linear forms
(characters) φ : A → C, (necessarily ‖φ‖ ≤ 1 and, when A is
unital, ‖φ‖= φ(1) = 1) equipped with the w*-topology: φi → φ iff
φi(a)→ φ(a) for all a ∈A .
When A is non-abelian there may be no characters (consider
M2(C) or B(H ), for example).
When A is abelian there are ‘many’ characters: for each a ∈A
there exists φ ∈ Â such that ‖a‖= |φ(a)|.
When A is unital Â is compact and A is isometrically
*-isomorphic to C(Â ).



The Continuous Functional Calculus

Let A be a selfadjoint element of the unital C*-algebra B(H ).
For any polynomial p(λ ) = ∑n ck λ k we have a (normal) element
p(A) = ∑n ckAk ∈B(H ).
The map

P(σ(A))→B(H ) : Φ0 : p→ p(A)

is a *-homomorphism.
We wish to extend this map to a map f → f (A) defined on all
continuous functions f : σ(A)→ C.



The Continuous Functional Calculus

Theorem

If A ∈B(H ) is selfadjoint and p is a polynomial,

‖p(A)‖= sup{|p(λ )| : λ ∈ σ(A)} ≡ ‖p‖σ(A).

This is a consequence of

Proposition (Spectral mapping Theorem I)

If A ∈B(H ) is selfadjoint and p is a polynomial,

σ(p(A)) = {p(λ ) : λ ∈ σ(A)}.

and the fact that the spectral radius of a normal element (p(A)
is normal) equals its norm.



The Continuous Functional Calculus

Definition

Let A = A∗ ∈B(H ). The continuous functional calculus for
A is the unique continuous extension

Φc : (C(σ(A)),‖.‖σ(A))→ (B(H ),‖.‖) : f → f (A)

of the map Φo : p→ p(A).
Thus if f is continuous on σ(A), the operator f (A) ∈B(H ) is
defined by the limit

f (A) = limpn(A) where ‖pn− f‖σ(A)→ 0.



The Spectral Theorem

If A ∈B(H ) is selfadjoint and K = σ(A), the continuous
functional calculus

Φc : C(K )→B(H ) : f → f (A)

is a representation of the (abelian) C*-algebra C(K ) on H .
We will construct a ‘measure’ E(·) with values not numbers, but
projections on H , so that

Φc(f ) =
∫

K
f (λ )dEλ for each f ∈ C(K )

and in particular A = Φc(id) =
∫

K
λdEλ .

(This generalises A = ∑λiEi ,

where λi : eigenvalues, Ei : eigenprojections of A ∈Mn.)



The Spectral Theorem

Definition

A (regular) ‘spectral measure’ on K is a map
E : S (K )→B(H ) such that (S (K ): the Borel σ -algebra)

1 E(Ω)∗ = E(Ω)

2 E(Ω1∩Ω2) = E(Ω1).E(Ω2)

3 E( /0) = 0 and E(K ) = I

4 for x ,y ∈ H, the map µxy : Ω→ 〈E(Ω)x ,y〉 is a σ -additive
complex-valued (regular) set function on S (K ).

Theorem

Every representation π of C(K ) on a Hilbert space H
determines a unique regular Borel spectral measure E(.) on K
so that ∫

K
fdE = π(f ) (f ∈ C(K )).



Positivity

Definition

An element a ∈A is positive if a = a∗ and σ(a)⊆ R+.
We write A+ = {a ∈A : a≥ 0}.
If a,b are selfadjoint, we define a≤ b by b−a ∈A+.

Examples

In C(X ): f ≥ 0 iff f (t) ∈ R+ for all t ∈ X because σ(f ) = f (X ).
In B(H ): T ≥ 0 iff 〈T ξ ,ξ 〉 ≥ 0 for all ξ ∈ H.

Remark

Any morphism π : A →B between C*-algebras preserves
order:

a≥ 0 ⇒ π(a)≥ 0.

Remark

If a = a∗ then −‖a‖1≤ a≤ ‖a‖1.



Positivity

Proposition

Every positive element has a unique positive square root.

Theorem

In any C*-algebra, any element of the form a∗a is positive.

For the proof, we need
Proposition

For any C*-algebra the set A+ is a cone:

a,b ∈A+, λ ≥ 0 ⇒ λa ∈A+,a + b ∈A+.

Lemma

In a unital C*-algebra if x = x∗ and ‖x‖ ≤ 1, then

x ≥ 0 ⇐⇒ ‖1−x‖ ≤ 1.



The GNS construction

Definition

A state on a C*-algebra A is a positive linear map of norm 1,
i.e. φ : A → C linear such that φ(a∗a)≥ 0 for all a ∈A and
‖φ‖= 1. A state is called faithful if φ(a∗a) > 0 whenever a 6= 0.

NB. When A is unital and φ is positive, ‖φ‖= φ(1).

Examples

• On B(H ), φ(T ) = 〈T ξ ,ξ 〉 for a unit vector ξ ∈H ,
or φ(T ) = ∑i 〈T ξi ,ξi〉 where ∑‖ξi‖2 = 1 (diagonal ‘density
matrix’).
• On C(K ), φ(f ) = f (t) for t ∈ K ,
or φ(f ) =

∫
fdµ for a probability measure µ.

• For a C*-algebra A , if π : A →B(H ) is a representation and
ξ ∈H a unit vector, φ(a) = 〈π(a)ξ ,ξ 〉.

Conversely,



The GNS construction

Conversely,

Theorem (Gelfand, Naimark, Segal)

For every state f on a C*-algebra A there is a triple (πf ,Hf ,ξf )
where πf is a representation of A on Hf and ξf ∈Hf a cyclic 4

unit vector such that

f (a) = 〈πf (a)ξf ,ξf 〉 for all a ∈A .

The GNS triple (πf ,Hf ,ξf ) is uniquely determined by this
relation up to unitary equivalence.

4i.e. πf (A )ξf is dense in Hf .



The universal representation

Theorem (Gelfand, Naimark)

For every C*-algebra A there exists a representation (π,H )
which is one to one (called faithful).

Idea of proof Enough to assume A unital. Let S (A ) be the
set of all states. For each f ∈S (A ) consider (πf ,Hf ) and ‘add
them up’ to obtain (π,H ). Why is this faithful? Because

Lemma

For each nonzero a ∈A there exists f ∈S (A ) such that
f (a∗a) > 0.

... and then

‖π(a)ξf‖2 = 〈π(a∗a)ξf ,ξf 〉= 〈πf (a∗a)ξf ,ξf 〉= f (a∗a) > 0

so π(a) 6= 0.
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